This error is reproduced in Table 38 on page 188 of Biometrika Tables for Statisticians, Volume 1, by E. S. Pearson and H. O. Hartley, University Press, Cambridge, 1954.

Anna M. Glinski
John Van Dyke
National Bureau of Standards
Washington 25, D. C:
311.-R. Latscha, "Tests of significance in a 2×2 contingency table: extension of Finney's table," Biometrika, v. 40, Parts 1 and 2, June 1953, p. 74-86.

These tables have been checked against the Lieberman-Owen Tables of the Hypergeometric Probability Distribution, and the following errors noted.

A	B	a	prob.	for		read	
16	10	14	0.05	4	.018		4
.017							
16	10	14	0.025	4	.018	4	.017
16	4	15	0.005	1	.001	0	.001
17	4	16	0.05	1	.011	1	.012
17	4	16	0.025	1	.011	1	.012
19	16	13	0.025	4	.012	4	.012
19	8	15	0.05	2	.013	2	.014
19	8	15	0.025	2	.013	2	.014
19	6	19	0.05	4	$.050-$	4	.050
20	15	17	0.005	5	.002	5	.003
20	12	19	0.05	7	.019	7	.018
20	12	19	0.025	7	.019	7	.018

In order to be consistent with the method of construction for this table, in which the value of b recorded is the greatest significant value for which the corresponding probability is less than or equal to the probability shown at the head of the column, the following additional line should be inserted in the appropriate place in the table:

			Probability				
A	B	a		0.05	0.025	0.01	0.005
19	1	19	0	. 050	---	---	---

Corrigenda

Andres Zavrotsky, "Construccion de una escala continua de las operaciones aritmeticas," Math. Comp., Review 63, v. 15, 1961, p. 299-300.

On page 300, line 7, instead of $L^{n} x=H(G x-1)$, read $L^{n} x=H(G x-n)$.
R. T. Ostrowski \& K. D. Van Duren, "On a theorem of Mann on latin squares," Math. Comp., v. 15, 1961, p. 293-295.

On page 294 , line 18 from the bottom, for $\frac{1}{4}\left(\frac{10}{5}\right)^{2}=15,876, \operatorname{read} \frac{1}{4}\binom{10}{5}^{2}=15,876$.
Arnold N. Lowan, "On th numerical treatment of heat conduction problems with mixed boundary conditions," Math. Comp., v. 14, 1960, p. 266-270.

For equations (13), (14), and (15) on page 269, read

$$
\begin{align*}
& T_{h, 1, n+1}=\alpha T_{h-1,1, n}+(1-2 \alpha-\beta) T_{h, 1, n}+\alpha T_{h+1,1, n}+\beta T_{h, 2, n}+U_{h, 1, n} \tag{13}\\
& c_{1} / \Delta x \leqq h<M \\
& T_{M, k, n+1}=\beta T_{M, k-1, n}+\alpha T_{M-1, k, n}+(1-\alpha-2 \beta) T_{M, k, n}+\beta T_{M, k+1, n} \tag{14}\\
& +U_{M, k, n} \\
& 1<k<N \\
& T_{h, N, n+1}=\beta T_{h, N-1, n}+\alpha T_{h-1, N, n}+(1-2 \alpha-\beta) T_{h, N, n} \tag{15}\\
& +\alpha T_{h+1, N, n}+U_{h, N, n} \\
& c_{2} / \Delta x \leqq h<M
\end{align*}
$$

where $U_{h, 1, n}$ and $U_{M, k, n}$ and $U_{h, N, n}$ are the same as previously given. In addition, for points bounded on two sides by heat fluxes, the equations must be further modified to give

$$
\begin{gathered}
T_{M, 1, n+1}=\alpha T_{M-1,1, n}+(1-\alpha-\beta) T_{M, 1, n}+\beta T_{M, k+1, n}+U_{h, 1, n} \\
+U_{M, k, n} \quad \text { for } \quad h=M, \quad k=1
\end{gathered}
$$

and

$$
\begin{aligned}
T_{M, N, n+1}= & \beta T_{M, N-1, n}+\alpha T_{M-1, N, n}+(1-\alpha-\beta) T_{M, N, n}+U_{M, k, n} \\
& +U_{h, N, n} \quad \text { for } \quad h=M, \quad k=N
\end{aligned}
$$

Norman J. McCormick
Ann Arbor, Michigan

